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Abstract
A two-dimensional magnetic Ising system confined in an L × D geometry
(L � D) in the presence of competing magnetic fields (h) acting at opposite
walls along the D-direction exhibits an interface between domains of different
orientation that runs parallel to the walls. In the limit of infinite film thickness
(L → ∞) this interface undergoes a wetting transition that occurs at the critical
curve Tw(h), so that for T < Tw(h) such an interface is bound to the walls,
while for Tw(h) � T � Tcb the interface is freely fluctuating around the
centre of the film, where Tcb is the bulk critical temperature. Starting from
a monodomain structure with the interface bound to one wall, we study the
onset of the interface unbinding by considering both short- and long-range
magnetic fields acting at the walls. It is shown that, within the critical wetting
regime, in both cases the correlation length of interfacial fluctuations ξ‖ grows
with time t as ξ‖ ∝ t1/z with z = 2, while the interfacial position follows
Z0(t) ∝ t1/2z = t1/4 both in the case of short-range and long-range surface
fields, respectively, consistent with dynamic scaling predictions. Furthermore,
considering the complete wetting regime and in the presence of a bulk magnetic
field, we find that the interface location also obeys standard dynamic scaling
behaviour for both short-range and long-range fields.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

It is known that when a saturated gas is in contact with a wall or substrate mutual interactions
may lead to the observation of a rich variety of physical phenomena, such as wetting, capillary
condensation, thin film growth, epitaxy, interface roughening, etc [1–7]. Within this context,
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the study of the wetting of a solid surface by a fluid has attracted considerable attention not
only due to their relevance for many technological applications [1, 8–14], but also due to the
theoretical challenges involved in the understanding of wetting phenomena [1–7].

An interesting aspect of wetting phenomena that is much less understood is the kinetics of
the formation of wetting layers. For example, consider the situation where a substrate exposed
to a gas is at equilibrium at the temperature Tw of the wetting transition or above it (T > Tw) but
at a very low gas pressure. At time t = 0 the gas pressure is enhanced up to its value at the gas–
liquid coexistence curve of the bulk fluid. Then one expects that by condensation of the atoms
from the gas on the substrate a wetting layer forms, and the thickness, Z0, of this layer will
increase with time (and diverge to infinity as t → ∞, in the ideal case). Related phenomena
are as well expected in other systems where wetting phenomena occur, such as binary fluid
mixtures exposed to walls [1–5, 15], solid alloys with free surfaces where surface enrichment
or wetting of one component could be influenced by temperature quenches, and anisotropic
magnets exposed to surface magnetic fields (e.g. due to a ferromagnetic surface film of another
material). Apart from early theoretical work [16–21] and some, rather preliminary, computer
simulations [22–26], we are not aware of much activity on this problem. Note that we are
not concerned with the closely related problem of surface-directed spinodal decomposition in
binary mixtures, where the growth of wetting layers competes with phase separation in the
bulk [27–31]. In the present work, we consider only the situation where in the bulk (i.e. at
distances Z → ∞ from the surface) the system is in equilibrium as a pure (single-phase) state
right at the coexistence curve.

With respect to the static properties of phase transitions, phenomena such as the gas–liquid
transition, phase separation in binary mixtures, the order–disorder transition of anisotropic
magnets, etc, all fall in the same universality class (of the Ising model) [32]. This is not
true, however, with respect to dynamic aspects of these transitions: as is well known [33, 34],
dynamic universality classes are narrower, in particular because conservation laws matter. This
remark holds true not only for the dynamics of fluctuations close to equilibrium, but also for
the growth of ordered domains out of initially disordered configurations in the bulk [34–36].

In the present paper, we only consider the simplest case where no conservation rule acts,
namely the two-dimensional Ising model with simple spin flip kinetics [37], as considered
in [16, 23, 24, 38]. As discussed previously [23], this situation can be realized physically when
at a stepped surface of a crystal the growth of an adsorbed monolayer starts from a step, and an
interface separating the liquid phase of this lattice gas from the gas phase at a distance Z0(t)
from the step forms. We shall consider both the standard case of short-range surface forces
(represented by a local surface magnetic field H (1), if the lattice gas model is represented by
an Ising magnet [39, 40]) and the case of long-range surface forces, where the field H (n) due
to the boundary decays with the distance Z = na (a being the lattice space) as H (n) ∝ n−p

with an exponent p = 3. There are several motivations for this latter choice. First of all, this
is the physically most relevant case for fluids interacting with an attractive wall. The exponent
p = 3 results when the attractive tail of dispersion forces such as the Lennard-Jones interaction
is integrated over a semi-infinite bulk (in d = 3 dimensions), and therefore this case is most
often discussed in the literature [1–5, 38, 41]. Moreover in d = 2 this case is theoretically
more interesting, since it is the borderline case for the strong fluctuation regime of critical
wetting, the so-called intermediate fluctuation regime [5], characterized by a correlation length
that diverges exponentially fast when the wetting transition is approached [42]. For p > 3 the
entropic repulsion of the interface dominates [43] and the wetting behaviour is asymptotically
the same as in the case of short range surface fields, while for p < 3 one would rather obtain
exponents at complete wetting that depend on p [42]. Although a study of choices of some
non-integer values for p in the regime 2 < p < 3 would be very interesting, it is outside the
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scope of the present work. For the case p = 3, however, several aspects of this transition,
including the phase diagram and interfacial properties, have already been studied in previous
simulation work [38, 41].

Since simulations deal with finite rather than semi-infinite systems, we actually consider a
thin strip of thickness L, applying opposite fields at both boundaries in order to induce a single
interface in the system, and restrict our attention to the case Z0(t) � L, thus avoiding the need
to consider finite-size effects. Our study is complementary to the previous work [26], where
the approach to equilibrium (Z0(t → ∞) = L/2 in this situation) was considered, starting
also from different initial states (namely completely disordered initial configurations). In the
following section, this model will be characterized more precisely.

2. The confined Ising ferromagnet with competing fields

The Hamiltonian H corresponding to the Ising model [44] in a confined geometry of size L×D
(L � D) is given by

H = −J
∑

〈i j,i ′ j ′〉
σi jσi ′ j ′ − H

∑

i j

σi j −
∑

n

H ( j)
∑

i

σni , (1)

where σi j are the Ising spin variables that may assume two different values, namely σi j = ±1,
1 � j � L and 1 � i � D. J > 0 is the coupling constant of the ferromagnet. The first sum
of equation (1) runs once over all the nearest-neighbour pairs of spins, and H is a uniform field
that acts on all spins.

Considering the L × D geometry with periodic boundary conditions along the x-direction
(x = ia, a being the lattice spacing, taken as unity henceforth), and taking free boundary
conditions along the perpendicular direction, we label successive layers by the index n (n =
1, . . . , L). Furthermore, we apply magnetic fields due to the free boundary conditions adjacent
to spins in layers n = 1 and L, respectively. We restrict ourselves to the case of competing
fields. However, the influence of both short-range (SR)

H (n) = h[−δ1n + δLn], n = 1, . . . , L (2)

and long-range (LR)

H (n) = h[−n−p + (L − n + 1)−p], n = 1, . . . , L (3)

boundary fields will be studied.
The Ising magnet in two dimensions and in the absence of any external magnetic field

(H = 0 in equation (1)) undergoes a continuous order–disorder transition at the Onsager critical
temperature kBTcb/J = 2/ ln(1 + √

2) = 2.269 . . . [45]. In the following, temperatures are
reported in units of Tcb. However, in the confined geometry between two competing walls
used in this work, close to Tcb domains of opposite magnetization gradually build up at the
corresponding walls and stabilize an interface which fluctuates around the centre of the film.
Upon reducing the temperature further one encounters an interface localization/delocalization
(weakly rounded) transition; see also [46–49] (and references therein). Below the L-dependent
transition temperature, Tcw(L, h), the system laterally phase separates into domains, and the
interface is localized at either of the two walls with the same probability. This interface
localization/delocalization transition is a precursor of the true wetting transition Tcw(hcw) of
the infinite system. For the case of SR fields, the wetting phase diagram has been calculated
exactly by Abraham [50], yielding

exp(2J/kBT )[cosh(2J/kBT ) − cosh(2hSR
cw/kBT )] = sinh(2J/kBT ), (4)
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where kB is the Boltzmann constant and hSR
cw(T ) is the critical surface field (the inverse function

of the wetting temperature Tcw(h)). In the present work we will take T = 0.8, such that
hSR

cw = 0.5994.
In the present work the case of LR fields with p = 3 in equation (3) will be considered. For

this case the phase diagram is not exactly known yet, except for two extremal points, namely
hLR

cw (T = 0) = [∑∞
n=1 n−3]−1 and hLR

cw (T = Tcb) = 0. However, in a recent work we have
estimated some critical wetting points by extrapolating numerical results to the thermodynamic
limit [38]. So, as in the case of SR fields we will take T = 0.8, resulting in hLR

cw = 0.435 [38].
This estimate is in very good agreement with a recent independent estimate based on transfer
matrix-type techniques [51].

3. Theoretical background on the dynamics of wetting layers

Let us denote by Z0(t) the distance from the nearest wall to the average position of the
interface between magnetic domains of different orientations at time t . This quantity can also be
considered as the thickness of the wetting layer. Z0(t) can be expressed in terms of a dynamic
scaling ansatz [16, 23] similar to the scaling approach used in domain growth [52], yielding

Z0(t, ξ‖) = b−βs Z∗
(

b−ν‖zt, bξ
−1/ν‖
‖

)
(5)

where b is a scale factor, ξ‖ is the correlation length for interfacial fluctuations in the direction
parallel to the wall, ν‖ is the corresponding correlation length exponent, z is a dynamic
exponent, and βs is the static exponent describing the divergence of the distance of the interface
from the wall. Z∗ denotes a scaling function (as well as Z∗∗ and Z∗∗∗ below).

Let us now consider two different physical situations: (i) critical wetting, i.e. in the absence
of bulk field H = 0 and very close to the wetting critical point, and (ii) complete wetting, i.e.
within the wet phase with h > hcw and for H �= 0.

(i) For the case of critical wetting we define τ = T − Tcw, so that ξ cw
‖ � τ−νcw

‖ . So,
equation (5) becomes

Z0(t, τ ) = b−βcw
s Z∗∗(b−zνcw

‖ t, bτ ); H ≡ 0. (6)

In equations (5) and (6) and in the following we have assumed that lengths are measured in
units of the lattice spacing, temperatures in units of the bulk critical temperature, fields in units
of the exchange constant, and time in units of Monte Carlo steps per spin, so the factor b is
dimensionless, and we just exploit the scaling properties of homogeneous functions.

Noting that static scaling at wetting transitions in d = 2 implies Z0(t → ∞) ∝ ξ⊥ ∝ ξ
ζ

‖
with the ‘wandering exponent’ ζ = 1/2, one generally concludes in d = 2 that νcw

⊥ = −βcw
s =

νcw
‖ /2 [5]. Additionally, Z0 ∝ ξ⊥ implies that the profile perpendicular to the surface is

characterized by a single length scale.
Now, by taking b = t1/zνcw

‖ and considering the wetting critical point with τ ≡ 0 so that
the second scaling variable vanishes, equation (6) becomes

Z0(t) � t−βcw
s /zνcw

‖ = t1/2z; H ≡ 0. (7)

(ii) For the case of complete wetting we have to work in the wet phase (τ = T − Tcw > 0)

and study the limit H → 0. In the present paper, we shall study numerically only the related
case where we approach the critical wetting transition varying the bulk field. Thus ξ co

‖ � H −νco
‖

and equation (5) yields

Z0(t, H ) = b−βco
s Z∗∗(b−zνco

‖ t, bH ). (8)

Now, by assuming b = H −1, equation (8) yields

Z0(t, H ) = H βco
s Z∗∗∗(H zνco

‖ t). (9)
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It is worth mentioning that an equivalent scaling approach can be derived in terms of the
surface excess magnetization (mex), which in addition to Z0 can also be used as a suitable order
parameter of the wetting transition [24]. mex is obtained from the surface free energy Fs and is
given by [24] (here the index ‘cw’ for critical wetting for simplicity is omitted).

mex ≡ −
(

∂Fs

∂ H

)

T,hw

= τ−ν⊥m̃ex(H τ−(ν‖+ν⊥), Lτ ν⊥ , Dτ ν‖ ), (10)

where ν⊥ is the correlation length exponent in the direction perpendicular to the wall and m̃ is
a suitable scaling function that need not to be specified here. So, one finds that ξ⊥ ∼ τ−ν⊥ ,
and the scaling hypothesis implies that the thickness of the wetting layer, that diverges when
approaching criticality, is proportional to the excess magnetization (mex ∼ ξ⊥ ∼ τ−ν⊥ ).

Equation (10) can be generalized in order to account for the time dependence by including
an additional term and introducing the dynamic exponent z,

mex(t, τ, H, L, D) = b−ν⊥m̃ex(b
ν‖z t, b−1τ, b−(ν‖+ν⊥) H, bν⊥ L, bν‖ D), (11)

where b is again a scale factor. In order to obtain the dynamic scaling behaviour, let us set
b = t−1/ν‖z and take the limit L, D → ∞; or equivalently considering a time regime such that
ξ⊥ � L and ξ‖ � D, keeping the generalized aspect ratio S = L1/ν⊥/D1/ν‖ constant. So,
equation (11) becomes

mex(t, τ, H ) = tν⊥/ν‖zm̃ex(t
1/ν‖zτ, t (ν⊥+ν‖)/ν‖z H ). (12)

Note that for the case of critical wetting equation (7) can be recovered from equation (12)
just by taking τ = 0 and H = 0, and recalling that in d = 2 dimensions for SR fields and LR
fields with p � 3 one also has that βcw

s = −ν⊥.
On the other hand, for complete wetting one can recover equation (9) by setting b =

H 1/(ν‖+ν⊥) and taking τ = 0 in equation (11), namely

mex(t, H ) = H −ν⊥/(ν‖+ν⊥)m̃ex(H ν‖z/(ν⊥+ν‖)t), (13)

where by comparing to equation (9) one also has that βco
s = −ν⊥/(ν‖+ν⊥) and νco

‖ = ν‖/(ν‖+
ν⊥). Recalling furthermore that in d = 2 we have ν⊥ = ν‖/2, we find βco

s = −1/3, νco
‖ = 2/3.

4. Results and discussion

The evolution of Ising films is simulated using the standard Metropolis algorithm. The time
is measured in Monte Carlo steps (mcs), such that during 1 mcs L × D spins of the sample,
chosen randomly, are attempted to be flipped. Simulations are always started using ordered
configurations with all spins pointing up, which subsequently are annealed to the desired point
of the phase diagram. We choose L = 128 and D = 512 throughout, such that for the times
that are studied finite-size effects can safely be ignored.

Taking advantage of the exact knowledge of the wetting phase diagram for SR fields,
given by equation (4), we have performed extensive simulations at the wetting critical point
hSR

cw = 0.5994, which corresponds to T SR
cw = 0.800. For LR fields we have also taken the same

temperature that corresponds to hLR
cw = 0.435. We have selected these points in order to avoid

possible corrections due to the vicinity of the bulk (2D Ising) critical behaviour, which may
become relevant close to Tcb. Also, this temperature is high enough to achieve a reasonable
spin-flip rate using standard algorithms [37]. Simulations within the complete wetting regime
are performed for T = 0.8, hw = 1.0 and different values of the bulk field H .
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Figure 1. (a) Plot of the magnetization profiles M( j, t) versus the row index j (measured in lattice
units). Each curve corresponds to different times, increasing from left to right, as listed in the
key. Results obtained for SR fields at hSR

cw = 0.5994 and Tcw = 0.800, using lattices of size
L = 128 × D = 512 and averaging over 100 different initial configurations. (b) Scaled plot of
M( j, t) versus j/t1/4 obtained using the results shown in part (a) and taking the profiles measured
for t � 529 mcs. More details in the text.

In order to study the dynamics of the delocalization of the interface we have recorded
the magnetization profiles M( j, t) measured along the z-direction and averaged over the
x-direction parallel to the walls, given by

M( j, t) =
〈
M̃( j, t)

〉
=

〈
1

D

D∑

i=1

σi j (t)

〉
, (14)

where 〈 〉 corresponds to averages taken over typically 100–1000 different realizations. The
row magnetization describes the magnetization profiles M( j, t), 1 � j � L, for any desired
time t . In addition to the magnetization profiles we have also measured their fluctuations that
yield the susceptibility profiles given by

χ( j, t) =
〈
M̃2( j, t)

〉
−

〈
M̃( j, t)

〉2
. (15)

First, we investigate the critical wetting regime. In figure 1(a) we present plots of
the magnetization profiles corresponding to the case of SR fields and obtained at different
times. While the bulk magnetization remains almost unchanged and close to the value of the
spontaneous bulk magnetization, the magnetization of the rows in the neighbourhood of the
wall decreases and the effect of the field propagates in the direction perpendicular to the wall.

The behaviour of the magnetization profiles can also be observed (qualitatively) in the
snapshot configurations shown in figure 2. At early times (t = 16 mcs) only a few drops
have developed close to the left wall and the magnetization of the first row is still positive
(see figure 1(a)). For t = 64 mcs the development of two dominant drops is observed but the
interface is still bound to the left wall. For longer times (t = 256 mcs and t = 576 mcs, in
figure 2) the interface moves into the bulk; however, such a displacement is not uniform and
even for the longest time measured some dangling ends of the domain of positive magnetization
are still in contact with the left wall.

Figure 3(a) shows the magnetization profiles for the case of LR fields. The qualitative
behaviour seems to be similar to the case of SR fields (see e.g. figure 1(a)); however, a more
careful comparison performed at later times (e.g. t = 40 000 mcs in figure 3(b)) reveals that
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(a) (b) (c) (d)

Figure 2. Snapshot configurations obtained at Tw = 0.8 and hSR
cw = 0.5994 using for clarity lattices

of the small size L = 24 × D = 96. (For the configurations of the actually analysed systems, with
L = 128 and D = 512, the resolution would not suffice to see individual spins.) The snapshots are
taken, from left to right, after t = 16 mcs, t = 64 mcs, t = 256 mcs and t = 576 mcs, respectively.
More details in the text.

the interface propagates faster in the case of SR fields. We do not have a qualitative explanation
of why for LR surface fields the interface moves distinctly slower.

On the other hand, the susceptibility profiles are shown in figure 4, where one can observe
that each susceptibility profile exhibits a peak. Also, the profiles become broader and the peaks
are shifted toward the bulk when the time increases.

The magnetization profiles can also be used in order to evaluate both the effective width
of the interface w(t) and the average location of the interface Z0(t), by fitting the numerical
curves to an error function [38, 49],

m( j, t) = −m0 erf

(√
π( j − Z0(t))

2w(t)

)
, (16)

where the constant m0 is of the order of the bulk magnetization and is obtained for j > L/2.
For SR fields we expect that the average distance from the interface to the wall will obey

equation (7) with z = 2. Figure 5(a) shows that in fact the scaling relationship holds. This
statement is also strongly supported by figure 1(b), which shows that at late times the whole
magnetization profile scales with the expected exponent. Furthermore, in addition to data
obtained from the fits of the magnetization profiles according to equation (16) we have included
values of Z0(t) evaluated from the location of the maximum of the susceptibility profiles, as
shown in figure 4. Although in the case of the LR surface fields that are studied here the
static exponents of critical wetting are very different from the SR case, namely βcw

s = −∞,
νcw

‖ = ∞, the relation Z0 ∝ ξ⊥ ∝ ξ
1/2
‖ still holds, and hence in equation (7) there is no

difference.
Figure 5(b) shows a plot of the interface position versus t1/4 for the case of LR surface

fields. While some part of the data may be consistent with a power-law divergence for large
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Figure 3. (a) Plot of magnetization profiles M( j, t) versus the row index j (measured in lattice
units) corresponding to LR fields and different times as shown in the figure. Data obtained by
taking T = 0.80 and hLR

cw = 0.435. Results are averaged over 1000 different configurations.
(b) Magnetization profiles measured at t = 40 000 mcs and Tcw = 0.800. Data corresponding to
SR and LR fields are obtained at hSR

cw = 0.5994 and hLR
cw = 0.435, respectively. (c) Scaled plot of

M( j, t) versus ( j − Z0(t))/w(t) obtained using the magnetization profiles corresponding to LR
fields already shown in (a). More details in the text.

times, a significant curvature is observed when all the data are considered. This problem may
be due to the slower displacement of the interface in the LR case: only when Z0(t) is of the
order of several lattice spacings can one expect that the scaling regime is reached where the
asymptotic power laws hold. Additionally, we note that p = 3 chosen in our simulations is just
at the border to the strong fluctuation regime.

Starting the simulations from a fully ordered configuration with initial magnetization
M(t = 0) = 1 and annealing the system to the wetting critical point, a monotonic decay of the
total magnetization is expected to hold until the equilibration of the system. These data could
also be used to estimate the average position of the interface. In fact, based on geometrical
arguments and assuming that close to one wall, up to a distance of the order of Z0(t), the spins
are essentially pointing down, while close to the opposite wall most of the spins adopt the
upward direction, it follows that

M(t) � M(t = 0)(1 − 2Z0(t)/D). (17)
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Figure 4. (a) Plots of the susceptibility profiles χ( j, t) versus the row index j (measured in lattice
units). Each curve corresponds to different times, increasing from left to right, as listed in the
figure. Results obtained for SR fields at hSR

cw = 0.5994 and Tcw = 0.800, using lattices of size
L = 128 × D = 512 and averaging over 100 different initial configurations. (b) Scaled plot of the
data shown in (a). More details in the text.

This argument is useful in the limit when the bulk magnetization approaches its saturation
value. Figure 5(c) shows a log–log plot of D(1 − M(t))/2 versus t obtained for SR fields. It is
found that the asymptotic behaviour is compatible with the expected exponent 1/2z = 1/4, in
agreement with our previous estimations.

On the other hand the fits of the magnetization profiles according to equation (16) also
yield an estimate of the interface width w(t). According to the dynamic scaling theory for the
growth of interfaces, it is expected that the width has to be of the order of the correlation length
in the direction perpendicular to the interface, namely

w(t) ∝ ξ⊥ ∝ t1/z⊥ , (18)

where z⊥ = zν‖/ν⊥ = 4. Figure 6(a) shows that equation (18) is an excellent approximation
for the dynamic behaviour of the interface width for the case of SR fields. In view of the
already discussed problems to recognize the expected divergence of Z0(t), the case of LR fields
merits careful attention. So, apart from the values of the interface width obtained by fitting
the magnetization profiles according to equation (16), we have also performed an additional
estimate of the width by taking the local slope of the magnetization profiles at the point Z0(t),
with M(Z0) ≡ 0. The obtained data seems to be consistent with a power-law divergence of
w(t) (see figure 6(b)).

Now we take advantage of the fact that, for SR fields, both Z0(t) and w(t) scale with
the same exponent, namely t1/4. Therefore, by rescaling the horizontal axis of figure 1(a) one
expects data collapse, as shown in figure 1(b). On the other hand, for the case of LR fields
(figure 3(c)) an acceptable collapse (but worse than for the SR case) is only obtained by re-
scaling the horizontal axis by considering the temporal dependence of both Z0(t) and w(t),
including the observed corrections to the asymptotic scaling behaviour explicitly.

Let us now discuss the behaviour of the susceptibility. It should be noticed that the total
susceptibility of the system is given by the contribution of both the bulk and the surface,
χ = χb + χs/L, and χb remains non-singular at the wetting transition. So, one actually
measures the contribution due to surface effects.
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Figure 5. (a) Linear plot of the average position of the interface Z0(t) versus t1/2z = t1/4, as
obtained for SR fields. Full squares and circles correspond to data obtained from the fit of the
magnetization profiles according to equation (16) and measured from the location of the maximum
of the susceptibility profiles, respectively. The straight lines have been drawn to guide the eyes.
Both quantities can be taken as measures of the thickness of the wetting layers and hence should
scale with the same exponent, but there is no reason to assume that the prefactor of the power law
is the same. (b) Linear plot of Z0(t) versus t1/4 for LR fields. Results are obtained using lattices
of size D = 127 × M = 512 and averaging over 1000 different configurations. The straight line
has been drawn to guide the eyes. (c) Logarithmic plot of the estimated position of the interface
according to equation (17) versus t . Data corresponding to SR fields obtained using lattices of size
D = 256 × M = 1024. Results averaged over 31 different configurations. The straight line with
slope 1/2z = 1/4 has been drawn to guide the eyes. More details in the text.

On the other hand, the static susceptibility of the Ising strip can also be worked out in the
limit D → ∞ for fixed L, i.e. for a quasi-one-dimensional system. In fact, writing χ as a sum
over correlations

χ =
D,L∑

i, j

σi,nσ j,n, (19)

one obtains, after coarse-graining over the length L and converting the sum into an integral

χ ∝ L
∫ ∞

0
exp(−z ′/ξ‖) dz′ = Lξ‖, (20)

where one takes advantage of the fact that in the one-dimensional system the decay of the
correlation is a simple exponential function [53]. From equation (20) one expects that the
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Figure 6. (a) Linear plot of the width of the interface w(t) versus t1/z⊥ with z⊥ = 4, as obtained
from the fit of the magnetization profiles according to equation (16). Data corresponding to SR
fields. (b) The same plot as in (a) but for LR fields. Full circles and squares correspond to data
obtained by means of fits of equation (16) and an estimate of the width given by the local slope of
the magnetization profiles evaluated at the point Z0, with M(Z0) ≡ 0, respectively. In all cases the
straight lines have been drawn to guide the eyes. More details in the text.
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Figure 7. Linear–logarithmic plots of the maximum value of the susceptibility χmax(t) versus t1/z ,
obtained using z = 2. Results corresponding to SR (full circles) and LR (full squares) fields. The
lines are drawn to guide the eyes.

following dynamical behaviour holds:

χ ∝ t1/z, D → ∞. (21)

Within this context, the maximum value χmax of the susceptibility profiles, which occurs at
the location of the interface, can be considered as an estimate for χ in the quasi one-dimensional
system, and hence is expected to be well described by equation (21). This statement is
confirmed in figure 7 for the case of both SR and LR fields.

After determining the scaling behaviour of the position of χmax, or equivalently the average
location of the interface (see e.g. figure 5(a)), as well as their decay according to equation (21),
it is possible to draw a scaled plot of the susceptibility profiles. Results corresponding to SR
fields are shown in figure 4(b) and the obtained data collapse is acceptable.

As we have already discussed, the decay of the one-dimensional correlation function along
the direction parallel to the wall at the position of the interface is an exponential function [53]
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Figure 8. (a) Data corresponding to SR fields. Logarithmic–linear plot of the correlation function
evaluated at different times corresponding to different average positions of the interface (see key)
versus x . The lines are the best fits according to equation (22). The inset shows a plot of the
correlation length ξ‖ , evaluated from the fits of the correlation function, as a function of t . The line
has slope 1/z = 1/2 and has been drawn to guide the eyes. (b) The same as in (a) but for LR fields.

given by

g‖(x, t) ∝ exp(−x/ξ‖(t)), (22)

with ξ‖(t) ∝ t1/z . After the evaluation of the time dependence of the position of the interface,
as e.g. it is shown in figure 5, we have also calculated the decay of the correlations as shown
in figure 8. By fitting these curves we have evaluated ξ‖(t), that is shown as a function of t in
the inset of figure 8. Also in this case, the expected power-law growth of ξ‖(t) with exponent
1/z = 1/2 has been verified, for both SR (figure 8(a)) and LR (figure 8(b)) fields, respectively.

Let us now discuss the results obtained within the complete wetting regime. For these
simulations we have set T = 0.80 and hw = 1 for both SR and LR fields. In order to understand
the obtained results it is worth mentioning that the initial condition consists in samples with all
spins pointing up. So, the application of a bulk field H > 0 causes the interface to slowly depart
from the wall with hw < 0. In the long-time limit, this displacement of the interface is finite
as shown in figure 9(a). In fact, this figure shows plots of the interface position versus time
as obtained for two different values of the bulk magnetic field (H ) and considering SR fields.
On the other hand, figures 9(b) and (c) show the scaling plots of the data (see equation (9)),
obtained for different values of the bulk field, and corresponding to SR and LR surface fields,
respectively. In both cases we observe an acceptable data collapse that strongly supports the
dynamic scaling assumptions involved in equations (9) and (13). Furthermore, the scaling plot
shown in figure 9(c) provides evidence for the theoretical expectation that, for the case of LR
fields, the ratio ν‖/ν⊥ = 2 should be finite in spite of the fact that ν‖ = ∞ and ν⊥ = ∞. In
fact, in the vertical axis we have taken βco

s = −ν⊥/(ν‖ + ν⊥) = −1/3, while in the horizontal
axis we have assumed νco

‖ = ν‖/(ν‖ + ν⊥) = 2/3.

5. Conclusions

In this paper the first systematic investigation of the growth of wetting layers in the two-
dimensional kinetic Ising model with non-conserved order parameter has been presented. We
have considered both the case of critical wetting and of complete wetting, and we have studied
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Figure 9. (a) Plot of the location of the interface position versus time as obtained for two different
values of the bulk field H . Data correspond to SR surface fields with T = 0.8 and hw = 1. (b) and
(c) correspond to SR and LR surface fields, respectively, and show logarithmic plots of the scaled
position of the interface versus the scaled time, obtained using equation (9) with −βco

s = 1/3 and
zνco‖ = 4/3. Results are obtained for T = 0.8 and hw = 1. Different times are indicated by the
symbols in the key. The full lines with slope 1/4 indicate the behaviour of the scaling function Z∗∗∗
of equation (9), for t H 4/3 � 1.

both short- and long-range surface fields. We have carried out Monte Carlo simulations for
systems that were large enough that in the considered range of time finite size effects could
safely be neglected.

In the case of critical wetting, we have studied only the growth of wetting layers (and of
the parallel correlation length ξ‖(t), the susceptibility χ(t)) right at the wetting critical point.
We have obtained evidence that both ξ‖(t) ∝ t1/z and χ(t) ∝ t1/z with z = 2, for the case of
SR and LR surface fields. From the transverse length scales (interface position Z0(t), interface
width w(t)) we obtain Z0(t) ∝ w(t) ∝ t1/2z . Note that the factor 1/2 in this exponent can be
interpreted as the ‘wandering exponent’ ζ in the relation between the transverse and parallel
interfacial correlation lengths, ξ⊥ ∝ ξ

ζ

‖ = ξ
1/2
‖ , i.e. ζ = ν⊥/ν‖ = 1/2, irrespective of the

difference between critical wetting with SR surface fields (when ν‖ = 2) and with LR surface
fields (when ν‖ = ∞). In order to study this difference, one would have to study the scaling
behaviour as a function of both t and τ = T −Tcw. Such a study is very demanding on computer
resources, and hence has not been attempted here.

For the case of complete wetting, a scaling analysis including a non-zero magnetic field H
has been performed (figure 9), yielding reasonable evidence for dynamic scaling, compatible
with the exponent νco

‖ = 2/3. As expected, one can see that Z0(t) saturates at a finite thickness,
that decreases with increasing field H .
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